Optimization of corrosion inhibition of *Picralima nitida* leaves extract as green corrosion inhibitor for zinc in 1.0 M HCl

J. N. O. Ezeugo¹,*, O. D. Onukwuli², M. Omotioma³

¹Department of Chemical Engineering, Chukwuemeka Odumegwu Ojukwu University, Anambra State, Nigeria
²Department of Chemical Engineering, Nnamdi Azikiwe University, Awka, Nigeria
³Department of Chemical Engineering, Enugu State University of Science and Technology, Enugu, Nigeria

*E-mail address: jn.ezeugo@coou.edu.ng

ABSTRACT

Herein, the optimization of inhibitive action of the ethanol extract of oil from *Picralima nitida* leaves, towards acid corrosion of zinc, was tested using weight loss and thermometry methods. We found that the extract acts as a good corrosion inhibitor for zinc corrosion in 0.1 M HCl solutions. The inhibition action of the extract was discussed in view of Langmuir adsorption isotherm. This revealed that spontaneous processes govern the adsorption of the extract on zinc surface. Herein, the inhibition efficiency (IE) increases in line with corresponding increase in extract concentration. The temperature effect of the corrosion inhibition on the IE was also studied. This indicated that the presence of the extract increases the needed activation energy of the corrosion reaction. Furthermore, in our work, an optimal inhibition efficiency IE (%) of 86.78 was obtained at optimum inhibitor concentration of 1.2 gl⁻¹, optimum temperature and time of 313 k and 8 hrs, respectively. From the calculated thermodynamic parameters, it can be said, then, that *Picralima nitida* extract provides good protection to zinc against pitting corrosion in chloride ion containing solutions.

Keywords: Zinc, corrosion, *Picralima nitida*, inhibitor, optimization
1. INTRODUCTION

Corrosion is an electrochemical process that gradually returns metals such as zinc to its natural state in the environment. In other words, corrosion can be said to be destruction of material resulting from exposure and interaction with the environment. It is a major problem that requires immediate confrontation for safety, environment, and economic reasons. This ugly menace was also identified by (Thompson et al, 2007). Zinc consists of wide variety of alloys used since ancient times. Building industry frequently uses zinc alloys in roofing of house and other construction work because of its ductility and malleability. Therefore, zinc alloys are widely used in the production of many components and die-casting fittings in automobile and manufacturing and the mechanical industry, thanks to its super or super plasticity.

Zinc in spite of the so called super plasticity is not spared by corrosion, especially after prolonged period of exposure in corrosive environment, such as HCl. For this reasons a lot of efforts have been made using corrosion preventive practices and the use of green corrosion inhibitors is one of them (Anuradha et al, 2007). The use of green inhibitors for the control of corrosion of zinc and alloys which are in contact with aggressive environment is an accepted and growing practice as confirmed by (Valdez et al, 2003; Tayloy 2007; Khaled et al, 2008; Bothi et al, 2008). Large numbers of organic compounds are being studied to investigate their corrosion inhibition potential. Relation of these studies shows that organic compounds are not only expensive, but also toxic to living beings.

Plant extracts and organic species have therefore become important as an environmentally acceptable, readily available, and renewable source for a wide range of inhibitors (Rajendran et al 2004; Mesbah et al, 2007; Okafor et al, 2007). They are the rich sources of ingredients which have very high inhibition efficiency and hence termed “Green Inhibitors” (Lebrini et al, 2008; Radijcic et al, 2008; Refeay et al, 2008). Oguzie et al 2006, experimentally suggested that green corrosion inhibitors are biodegradable and do not contain heavy metals or other toxic compounds. The successful use of naturally occurring substances to inhibit the corrosion of the metals in acidic and alkaline environment have been reported by some research groups (Sharma et al 2009; Mabrouk et al, 2011; Eddy et al, 2012). Research efforts to find naturally organic substances or biodegradable organic materials to be used as effective corrosion inhibitors of a wide number of metals has been one of the key areas in this research work (Hryniewicz, et al, 2016, 2017).

The aim of this study is to optimize the inhibitive properties of Picralima nitida leaves extract onto zinc in hydrochloric acid media using response surface methodology (RSM). Several studies have already been carried out and have remained focused on the Picralima nitida leaves extract for their various pharmacological activities. Firstly, Picralima nitida plant is a tree that can reach a height of 35 meters, but is usually less. It is a commonly used herbal remedy in West Africa. All parts of the plant are bitter throughout its distribution area. The seeds, barks, roots and leaves have a reputation as a febrifuge and remedy for malaria as well as also being extensively used for pain relief and treatment of chest and stomach problems, pneumonia and intestinal worms (Nagam et al, 2012). A decoction of the leave is taken as a treatment for measles. The Picralima nitida leave contains many organic compounds, such as phenolics, terpenoids, and tannins as their major phytocompounds and also saponins, flavonoids and alkaloids in moderate amount to scavenge free radicals induce detoxification.
Presently, to the best of our knowledge no reported work in area of environment has been carried out on the corrosion inhibitive properties of the *Picralima nitida* leaves extract. Therefore, the aim of this research is to carry out a thorough investigation towards that, in 0.1 M HCl using the leaves extract of the study was done using thermometer, weight loss (Gravimetric) method and FTIR analysis. The effect of temperature and concentration on the rate of corrosion were also studied, and some thermodynamic and kinetic parameters were calculated, too. Application of central composite design (CCD) for optimization using statistical approaches such as RSM can be employed to maximize independent variable factors (inhibition concentrations, temperature and time) affecting corrosion inhibition processes in order to secure optimal expected responses, such as weight loss, corrosion rate and inhibition efficiency (E.E. Oguzie, 2006; Mabrouk, E. M. et al, 2011).

2. EXPERIMENTAL METHODS

2.1. Materials

Gravimetric and thermometric tests were performed on 99.988% Zn, other components (we %) were: Pb 0.003, Cd 0.003, Fe 0.002, Sn 0.001, Cu 0.00, Al 0.001. The sheet of zinc was cut into coupons (2.6 cm × 2.6 cm × 0.015 cm), cleaned and polished with emery paper to expose shining polished surface. The coupons were degreased with acetone in order to remove any trace of oil and impurities and finally washed with double distilled water, dried in air and then stored in desiccators prior to use.

The aggressive solution 1.0 M HCl was made from analytical grade hydrochloric acid (37%), and distilled water. *Picralima nitida* leaves collected from Uke in Anambra, Nigeria was sun-dried for three days. The dried leaves were ground to increase the surface area and stored in a closed container. For every of the extraction process, 30 grams of each of the ground *Picralima nitida* leaves were measured and soaked in 100 ml of ethanol for 48 hours. At the end of the 48hrs, each plant mixture was filtered. The filtrate is the mixture of the plant extract and the ethanol. The extract of *Picralima nitida* leaves obtained in ethanol solvent was concentrated, distilled off the solvent and evaporated to dryness. The plant extract was weighed and stored for the corrosion inhibition study.

2.2. Fourier Transform Infrared (FTIR) Analysis of *Picralima nitida* extract and Corrosion Production

The zinc was immersed in the HCl medium in the presence of the *Picralima nitida* leaves extract. At the end of the corrosion study, the corrosion products in the beakers were collected with aid of sample bottles SHIMADZU FT-IR spectrophotometer, model: IR affinity – 1, 5/NA 2137470136 SI) was used for the determination of the functional groups of the leaves extract of PNL (pure) and corrosion products in the presence of the PNL extract (Octave, 2003; Nwabunne et al, 2011; Nnanna et al, 2013; Rubite-Okorosaye, 2004). Comparative analysis of various FTIR produced peaks were carried out in order to determine the exact functional groups for the corrosion inhibition process.
2.3. Thermometric Method of the Corrosion Inhibition Study

The measurements were carried out using a thermostat set at 30 °C for the zinc in free and inhibited HCl. The temperatures of the system containing the zinc and the test solution were recorded regularly until a steady temperature value was evaluated using eqn. (1) (Deng, 2012; Patel et al, 2013; Alino et al, 2013; Satapathy et al, 2009)

\[RN = \frac{T_m - T_i}{t} \]

where: T_m and T_i are the maximum and initial temperatures (°C) respectively and t is the time in minutes elapsed to reach T_m.

The inhibitor efficiency was determined using eq (2)

\[IE\% = 1 - \frac{RN_{add}}{RN_{free}} \times 100 \]

where: RN_free and RN_add are the reaction numbers for the zinc dissolution in free and inhibited corrosive medium respectively.

2.4. Weight loss (gravimetric) Method using one factor at a time

The weight loss method was carried out applying one factor at a time. Considering the said method, the weight loss method was carried out at different temperatures and with various concentrations of the Picralima nitida extract. Weighed zinc coupons were separately immersed in 250 ml open beakers containing 200 ml of 1.0 M HCl. More so, zinc coupons were separately immersed in 150 ml open beakers containing 200 ml of 1.0 M HCl with various concentrations of PNL extract.

The variation of weight loss was monitored periodically at various temperatures in the absence and presence of various concentrations of the extracts. At the appropriate time, the coupons were taken out, immersed in acetone, scrubbed with a bristle brush under running water, dried and reweighed. The weight loss was calculated as the difference between the initial weight and the weight after the removal of the corrosion product. The experimental readings were recorded. The weight loss (\(\Delta w \)), corrosion rate (CR) and inhibition efficiency (IE) were determined using the eqn (3), (4), and (5), respectively. The surface coverage was obtained using equation 5 (El-Etre, 2003).

\[\Delta w = w_i - w_f \]

\[CR = \frac{w_e - f_e}{At} \]

\[(IE\%) = \frac{w_0 - w_1}{w_0} \times 100 \]

\[\theta = \frac{w_0 - w_1}{w_0} \]
where: \(w_i \) and \(w_f \) are the initial and final weight of zinc samples respectively, \(W_1 \) and \(W_0 \) are the weight loss values in presence and absence of inhibitor, respectively. \(A \) is the total area of the zinc sample and \(t \) is the immersion time.

2. 5. Effect of Temperature on the Corrosion Rate

Effect of temperature on the corrosion rate was described using Arrhenius equation

\[
CR = A e^{-\frac{Ea}{RT}}
\]

(7)

where: \(CR \) is the corrosion rate of the zinc, \(A \) is the pre-exponential factor, \(Ea \) is the activation energy, \(R \) is the universal gas constant. eq (7) can be linearized to form eq. (8).

\[
\ln (CR) = \ln A - \left(\frac{Ea}{R} \right) \left(\frac{1}{T} \right)
\]

(8)

Considering the corrosion rate of the zinc at \(T_1 \) and \(T_2 \) as \(CR_1 \) and \(CR_2 \), then eq. (8) can be expressed by eq. (9) [18, 20].

\[
\ln \left(\frac{CR_2}{CR_1} \right) = \left(\frac{Ea}{2.303R} \right) \left(\frac{1}{T_1} - \frac{1}{T_2} \right)
\]

(9)

Thermodynamic parameter for the adsorption process. The heat of adsorption \(Q_{ads} \) (KJmol\(^{-1}\)) was calculated using eq. (10) [21]

\[
Q_{ads} = 2.303R \left[\log \left(\frac{\theta_2}{1 - \theta_2} \right) - \log \left(\frac{\theta_1}{1 - \theta_1} \right) \times \frac{T_2 T_1}{T_2 - T_1} \right]
\]

(10)

where: \(R \) is the gas constant, \(\theta_1 \) and \(\theta_2 \) are the degree of surface coverage at temperature \(T_1 \) and \(T_2 \) respectively.

2. 6. Consideration of the Adsorption isotherm

The data obtained for the degree of surface coverage were used to test for the applicability of different adsorption isotherms (Langmuir, Frumkin, Temkin and Flory-Huggins isotherms).

1. Langmuir Isotherm

Langmuir isotherm can be expressed by eq (11) (Umoren and Ebenso, 2007).

\[
\frac{C}{\theta} = \frac{1}{K} + C
\]

(11)

where: \(C \) is the concentration of the inhibitor, \(K \) is the adsorption equilibrium constant and \(\theta \) is the degree of surface coverage. In logarithmic form, eq. (11) can be expressed in eq. (12)
\[
\log \frac{C}{\theta} = \log C - \log K
\]

(12)

2. **Frumkin Isotherm**

Franklin adsorption isotherm can be expressed according to eq. (13)

\[
\log \left(\frac{Cc}{\theta} \right) \left(\frac{\theta}{1 - \theta} \right) = 2.303 \log K + 2 \alpha \theta
\]

(13)

where: K is the adsorption – desorption constant and \(\alpha \) is the lateral interaction term describing the interaction in adsorbed layer.

3. **Temkin Isotherm**

Temkin isotherm can be expressed by eq. (14) [19]

\[
\theta = \frac{2.303 \log K}{2a} - \frac{2.303 \log C}{2a}
\]

(14)

where: \(k \) is the adsorption equilibrium constant, \(a \) is the attractive parameter, \(\theta \) is the degree of surface coverage, \(C \) is the concentration of the inhibitor

4. **Florry-Huggins Isotherm**

The Flory-Huggins isotherm can be expressed by eq (15).

\[
\log \left(\frac{\theta}{C} \right) = \log k + x \log(1 - \theta)
\]

(15)

where: \(x \) is the size parameter and is a measure of the number of adsorbed water molecules. The free energy of adsorption (\(\Delta G_{\text{ads}} \)) was calculated according to eq. (16) (Khadom et al, 2009; Cabot et al, 1991).

\[
\Delta G_{\text{ads}} = -2.303RT \log (55.5K)
\]

(16)

where: \(R \) is the gas constant. \(T \) is the temperature, \(K \) values obtain from the isotherms (Langmuir, Frumkin, Temkin and Flory-Huggins isotherm) were used to obtain the values of \(\Delta G_{\text{ads}} \) according to eq. (16).

3. **RESULTS AND DISCUSSION**

3. 1. **FTIR Spectrophotometer**

FTIR Spectrophotometer is a strong instrument that can be used to identify the type of bonding, especially functional group (s) present in organic compounds. Fig. 1 shows the IR spectrum of the ethanolic extract of *Picralima nitida* leaves extract. Initial absorption at 3952.4 to 3543.24 cm\(^{-1}\) (associated hydroxyl) was overlapped by the strong stretching bond of O-H.
Fig. 1. FTIR spectrum of (a) pure extract of *Picralima nitida* leave (b) corrosion product of zinc in HCl medium with picralima nitida extract.
The peaks at 3477.62 to 3261.46 cm\(^{-1}\) are attributed to medium and often broad stretch band of amines and amides, N-H. Wave band 3141.8 and 3053.02 cm\(^{-1}\) are variable stretch of alkyl and aldehyde bond group, C-H. The absorption band at 2971.96 cm\(^{-1}\) stands for strong and very broad stretch of carboxylic acid (free bond of alcohol). Wave band of 2751.94 cm\(^{-1}\), 2829.14 cm\(^{-1}\) are two-peaked medium stretch bond of aldehyde, C≡C. The peak at 2404.54 to 2030.12 cm\(^{-1}\) represent variable and sharp stretch bond of alkyne and nitrite, C=N. Wave band 1837.48 cm\(^{-1}\), 1658.65 cm\(^{-1}\) are strong representative of stretch bond of acids, esters anhydrides and aldehydes, C=O. The absorption bands 1597.8 cm\(^{-1}\), 1439.54 cm\(^{-1}\) are multiple sharp, medium peaks stretch of aromatic bond, C=C. This shows that *Picralima nitida* leaves extract contains mixtures of compounds, that is, alkaloids, flavonoids, phenolics, phytates, terpenoids, tannins and steroids (Satapathy et al, 2009).

3.2. Results of the Corrosion Inhibition as Determined by Thermometric Studies

The effect of concentration of *Picralima nitida* leaves (inhibitor) extract on the reaction number (RN) and the inhibition efficiency (IE) of zinc in the 0.1 M HCl medium is presented in Table 1. It was revealed that increase in concentration of the inhibitor lowers the reaction number. This is in agreement with previous observation (Librini et al, 2008). More so, the inhibition efficiency increases with increasing concentration of the inhibitor.

Table 1. Effect of the *Picralima nitida* leaves extract on the IE(%) of zinc in 0.1 M HCl medium

<table>
<thead>
<tr>
<th>Inhibitor concentration (gL(^{-1}))</th>
<th>RN</th>
<th>IE (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.1714</td>
<td></td>
</tr>
<tr>
<td>0.2</td>
<td>0.0863</td>
<td>49.65</td>
</tr>
<tr>
<td>0.45</td>
<td>0.0686</td>
<td>59.98</td>
</tr>
<tr>
<td>0.7</td>
<td>0.0423</td>
<td>75.33</td>
</tr>
<tr>
<td>0.95</td>
<td>0.033</td>
<td>80.74</td>
</tr>
<tr>
<td>1.2</td>
<td>0.027</td>
<td>84.25</td>
</tr>
</tbody>
</table>

3.3. Weight loss measurement

Fig. 2 represents the relation between time and inhibition efficiency of zinc in 0.1M HCl at various concentration of *Picralima nitida* leaves extract while Table 2 represent experimental results of weight loss and corrosion rate using one factor at a time.

Inspection of Fig. 2 reveals that the loss of weight increases linearly with increasing time in all tested solutions. However, the slopes of the obtained lines which represent the rate of weight loss, are affected by addition of *Picralima nitida* extract. The presence of the extract
causes a sharp decrease in the rate of weight loss. IEs at different concentrations of the extract were calculated using the equation (1).

$$IE(\%) = \frac{W_0 - W_1}{W_0} \times 100$$

(17)

where: W_1 and W_0 are the weight loss values in presence and absence of inhibitor respectively.

Fig. 2. Plot of IE(%) of zinc in HCl versus time at various concentration of PNL extract.

Table 2. Corrosion inhibition of zinc in 0.1M HCl with *Picralima nitida* leaves extract

<table>
<thead>
<tr>
<th>Time (hr)</th>
<th>Temperature (K)</th>
<th>Inhibitor conc. (gL⁻¹)</th>
<th>Weight loss (g)</th>
<th>Corrosion rate (Mg/cm² hr)</th>
<th>Inhibition efficiency (%)</th>
<th>Degree of surf. cov.</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>303</td>
<td>0</td>
<td>0.521</td>
<td>4.824</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2</td>
<td>0.245</td>
<td>2.269</td>
<td>52.98</td>
<td>0.5298</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.45</td>
<td>0.217</td>
<td>2.009</td>
<td>58.35</td>
<td>0.5835</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7</td>
<td>0.187</td>
<td>1.731</td>
<td>64.11</td>
<td>0.6411</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.95</td>
<td>0.1</td>
<td>0.926</td>
<td>80.81</td>
<td>0.8081</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2</td>
<td>0.071</td>
<td>0.657</td>
<td>86.37</td>
<td>0.8637</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0.545</td>
<td>5.046</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2</td>
<td>0.323</td>
<td>2.991</td>
<td>40.73</td>
<td>0.4073</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.45</td>
<td>0.264</td>
<td>2.444</td>
<td>51.56</td>
<td>0.5156</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.7</td>
<td>0.19</td>
<td>1.759</td>
<td>65.14</td>
<td>0.6514</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.95</td>
<td>0.145</td>
<td>1.343</td>
<td>73.39</td>
<td>0.7339</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.2</td>
<td>0.117</td>
<td>1.083</td>
<td>78.53</td>
<td>0.7853</td>
</tr>
</tbody>
</table>
The values of IEs and θs different *Picralima nitida* extract concentrations are given in Table 2. The tabulated data revealed that, the *Picralima nitida* leave extract acts as a good corrosion inhibitor for the acid corrosion of zinc. The corrosion inhibition increases with increasing extract concentration. The analysis of the *Picralima nitida* extract revealed that the ethanolic extract contains toluene, formular, C\(_7\)H\(_8\), molecular weight, 92, cyclohexane having formular C\(_8\)H\(_{16}\), molecular weight 112, hexane, 1,3-cyclopenta deine, molecular weight, 156. It also contains at least ten non-volatile acids including eicosane and citric acids. The adsorption of the compounds on the electrode surface make a barrier for mass and charge transfers as confirmed by (El-Etre, 2003). The outcome of this situation leads to a protection of the metal surface from the attack of the aggressive anions of the acid. The extent of protection increases with increasing of the surface fraction occupied by the adsorbed molecules. As the extract concentration is increased, the number of the adsorbed molecules on the surface increases. Table 2 represents also the values of adsorption isotherm parameter. From the table, a parameter (θ), which was estimated from the IE values, could be used to represent the fraction of the surface occupied by the adsorbed molecules. Inept examination of Table 2 reveals that the values of θ increases with increasing inhibitor concentrations. The dependence of the fraction of the surface occupied by the adsorbed molecules on the inhibitor concentration (c) is shown in fig. 3. A plot of C/θ versus C gives a straight line with unit slope. The results indicate that the adsorption of inhibitor molecules on the zinc surface follow Langmuir isotherm. In order words, the result suggests that there are no interactions or repulsion forces between the adsorbed molecules. It is of interest to note here that, the θ values obtained from the other used techniques also obey the Langmuir adsorption isotherm.

The standard adsorption free energy (\(\Delta G_{ads}\)) was calculated using the following equation (Umoren and Ebenso, 2007).

\[
K = \frac{1}{999} \exp \left(- \frac{\Delta G_{ads}}{RT} \right)
\]

where 999 is the concentration of water in solution expressed in gL\(^{-1}\). R is gas constant, and T absolute temperature. The mean values of standard adsorption free energy (\(\Delta G_{ads}\)) was -46.4018 kJmol\(^{-1}\). The negative value of \(\Delta G_{ads}\) guarantee the spontaneity of the adsorption process and stability of the adsorbed layer on the metal surface. It is generally known that, values of \(\Delta G_{ads}\) up to -20 kJmol\(^{-1}\) is consistent with electrostatic interaction between the charged molecules and the charge metal (physisorption) while those around – 40kJmol\(^{-1}\) or higher are associated with chemisorptions as a result of sharing or transfer of electrons from the molecules to the metal surface to form a coordinate type of bond. Other researchers, however suggested that the range of \(\Delta G_{ads}\) of chemical adsorption processes for inhibitor in
aqueous media lies between -21 and -42 kJmol⁻¹. Similar results were gotten by (Umoren and Ebenso, 2007; Khadom et al., 2009).

Table 3. Adsorption parameters for the corrosion inhibition of zinc in HCl by PNL extract

<table>
<thead>
<tr>
<th>Adsorption isotherm</th>
<th>Temperature (k)</th>
<th>R²</th>
<th>Log K</th>
<th>K</th>
<th>ΔG_ads (KJ/mol)</th>
<th>Isotherm property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langmuir isotherm</td>
<td>303</td>
<td>0.992</td>
<td>-0.155</td>
<td>0.6998</td>
<td>-9.220</td>
<td></td>
</tr>
<tr>
<td></td>
<td>323</td>
<td>0.978</td>
<td>-0.108</td>
<td>0.7834</td>
<td>-10.132</td>
<td></td>
</tr>
<tr>
<td>Frumkin isotherm</td>
<td>303</td>
<td>0.967</td>
<td>-1.1772</td>
<td>0.0665</td>
<td>-3.290</td>
<td>α</td>
</tr>
<tr>
<td></td>
<td>323</td>
<td>0.993</td>
<td>-0.9917</td>
<td>0.1019</td>
<td>-4.653</td>
<td>α</td>
</tr>
<tr>
<td>Temkin isotherm</td>
<td>303</td>
<td>0.834</td>
<td>-1.8252</td>
<td>0.0150</td>
<td>0.461</td>
<td>a</td>
</tr>
<tr>
<td></td>
<td>323</td>
<td>0.976</td>
<td>-1.3992</td>
<td>0.0399</td>
<td>-2.135</td>
<td>a</td>
</tr>
<tr>
<td>Flory-Huggins isotherm</td>
<td>303</td>
<td>0.622</td>
<td>0.474</td>
<td>2.9785</td>
<td>-12.869</td>
<td>x</td>
</tr>
<tr>
<td></td>
<td>323</td>
<td>0.926</td>
<td>0.427</td>
<td>2.6730</td>
<td>-13.428</td>
<td>x</td>
</tr>
</tbody>
</table>

From table 3, the values of ΔG_ads as recorded in the present work, has been considered within the range of physical adsorption. Limited increase in the absolute value of ΔG_ads at 303 K temperature, then, heat of adsorption decreases again at 313 k indicating that the adsorption was somewhat favorable at the experimental temperature, and Picralima nitida leaves extract adsorbed according to physical mechanisms, i.e. desorption of inhibitor molecules when temperature increased.

Fig. 3. Plot of Langmuir isotherm for zinc in HCl with PNL extract.
Moreover, the major characteristic Langmuir isotherm can be expressed in terms of linear regression coefficient. The value of the linear regression coefficient is close to unity, hence adsorption of the *Picralima tinida* leaves extract follows Langmuir isotherm and R² value is $0.994 \geq 0.982$. It is very important to note that the smaller values of R² indicate a highly favorable adsorption. R² > 1 unfavorable, R² = 1 linear, 0 < R² < 1 favorable and if R² = 0 irreversible. The table 3 shows the various values of R² for the entire tested isotherms model. The values of k_{ads} are relatively small indicating that the interaction between the adsorbed extract molecules and metal surface is physically adsorbed.

A close look at Table 4, shows various inhibition concentration (gL⁻¹) and their respective activation energy (KJ mol⁻¹). From the table, calculated Ea value for the inhibited solution with *Picralima nitida* extract is 52.404 and 82.985 KJ mol⁻¹ in the presence of the inhibitor of 0.95 and 1.2 gL⁻¹ extract concentrations, while with 0.45 and 0.70 gL⁻¹ concentration, the activation energies are 33.418 and 19.434 kJmol⁻¹; the higher values of Ea suggest that dissolution of zinc in the presence of inhibitor is slow, indicating a strong inhibitive action of phytochemicals of alkaloids, flavonoids and tannins presence in *Picralima nitida* leaves extracts, which leads to increasing the energy barrier for the corrosion process (Cobot et al. 1991). Actually, toluene molecules (the main compound of *Picralima nitida* leave extracts oil) are easily protonated and exist in 0.1 M HCl medium in cationic form. Indeed, it is logical to assume that in this study, the electrostatic cation adsorption is responsible for the good protective properties of this compound.

<table>
<thead>
<tr>
<th>Inhibitor concentration (gL⁻¹)</th>
<th>Ea (kJ mol⁻¹)</th>
<th>ΔG_{ads} (kJ mol⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>43.768</td>
<td>-28.445</td>
</tr>
<tr>
<td>0.45</td>
<td>33.418</td>
<td>-15.054</td>
</tr>
<tr>
<td>0.7</td>
<td>19.434</td>
<td>-3.167</td>
</tr>
<tr>
<td>0.95</td>
<td>52.404</td>
<td>-21.453</td>
</tr>
<tr>
<td>1.2</td>
<td>82.985</td>
<td>-37.102</td>
</tr>
</tbody>
</table>

3. 4. Results of the gravimetric method using RSM approach.

The expected responses of weight loss, corrosion rate and inhibition efficiency to the independent variables, such as concentration, temperature and time in respect to corrosion inhibition of picralima nitida leave extracts as a green corrosion inhibitor for zinc in HCl are listed in table

3. 5. Graphical Analysis of the Inhibition Efficiency, IE (%), as determined using (RSM)

Response surface methodology (RSM) was used to analyze the response. The ANOVA and graphical analyses of the inhibition efficiencies were carried out. The mathematical models in terms of coded and actual factors were obtained. The model in terms of coded factors was used to make predictions about the response for given levels of each factor.
Design-Expert® Software
Inhibition Efficiency
Color points by value of
Inhibition Efficiency:
87.1
40.65
Actual
Predicted
Predicted vs. Actual
30
40
50
60
70
80
90
100
30
40
50
60
70
80
90
100

Design-Expert® Software
Factor Coding: Actual
Inhibition Efficiency (%)
87.1
40.65
X1 = A: Acid Conc.
X2 = B: Inhibitor Conc.
Actual Factors
C: Temperature = 304.781
D: Time = 11.2875

(a)

(b)
Design-Expert® Software
Factor Coding: Actual
Inhibition Efficiency (%)
74.41
33.41
X1 = A: Acid Conc.
X2 = C: Temperature
Actual Factors
B: Inhibitor Conc. = 1.10859
D: Time = 11.2687

Design-Expert® Software
Factor Coding: Actual
Inhibition Efficiency (%)
87.1
40.65
X1 = B: Inhibitor Conc.
X2 = C: Temperature
Actual Factors
A: Acid Conc. = 1.48125
D: Time = 11.2875
Design-Expert® Software
Factor Coding: Actual
Inhibition Efficiency (%)
87.1
40.65
X1 = B: Inhibitor Conc.
X2 = D: Time

Actual Factors
A: Acid Conc. = 1.48125
C: Temperature = 304.781

Design-Expert® Software
Factor Coding: Actual
Inhibition Efficiency (%)
87.1
40.65
X1 = C: Temperature
X2 = D: Time

Actual Factors
A: Acid Conc. = 1.48125
B: Inhibitor Conc. = 1.11094
Figure 4. IE (%) of Zn in HCl Medium with PNL Extract

Table 5. RSM Result of the Inhibition of Zn in HCl Medium with PNL Extract

<table>
<thead>
<tr>
<th>Std</th>
<th>Run</th>
<th>Factor 1, Acid Conc. (M)</th>
<th>Factor 2 B, Inhibitor Conc. (g/l)</th>
<th>Factor 3, C, Temperature (K)</th>
<th>Factor 4, D, Time (hr)</th>
<th>Response 1, Weight Loss (g)</th>
<th>Response 2, Corrosion Rate (mg/cm²/hr)</th>
<th>Response 3, Inhibition Efficiency (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23</td>
<td>1</td>
<td>1</td>
<td>0.7</td>
<td>313</td>
<td>4</td>
<td>0.109</td>
<td>3.025</td>
<td>67.75</td>
</tr>
<tr>
<td>21</td>
<td>2</td>
<td>1</td>
<td>0.7</td>
<td>303</td>
<td>8</td>
<td>0.082</td>
<td>1.134</td>
<td>78.16</td>
</tr>
<tr>
<td>13</td>
<td>3</td>
<td>0.5</td>
<td>0.2</td>
<td>323</td>
<td>12</td>
<td>0.327</td>
<td>3.025</td>
<td>46.19</td>
</tr>
<tr>
<td>27</td>
<td>4</td>
<td>1</td>
<td>0.7</td>
<td>313</td>
<td>8</td>
<td>0.109</td>
<td>1.512</td>
<td>76.21</td>
</tr>
<tr>
<td>29</td>
<td>5</td>
<td>1</td>
<td>0.7</td>
<td>313</td>
<td>8</td>
<td>0.109</td>
<td>1.512</td>
<td>76.21</td>
</tr>
<tr>
<td>7</td>
<td>6</td>
<td>0.5</td>
<td>1.2</td>
<td>323</td>
<td>4</td>
<td>0.163</td>
<td>4.537</td>
<td>57.81</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>1.5</td>
<td>1.2</td>
<td>303</td>
<td>4</td>
<td>0.082</td>
<td>2.269</td>
<td>76.21</td>
</tr>
<tr>
<td>6</td>
<td>8</td>
<td>1.5</td>
<td>0.2</td>
<td>323</td>
<td>4</td>
<td>0.245</td>
<td>6.806</td>
<td>40.65</td>
</tr>
</tbody>
</table>
The high levels of the factors were coded as +1 and the low levels of the factors were coded as -1. The optimum inhibition parameters were obtained.

From the RSM graph predicted versus actual plot is used to test the significance of the model’s order. The predicted versus actual plot shows linear graph. The graphs (3-D surface plots) show the relationship between the factors and response (inhibition efficiency) of the designed experiment. Increase in concentration increases the inhibition efficiency. Also inhibition efficiency reduces as temperature rises.

Predicted versus actual IE (%) (b) IE (%) versus inhibition concentration and acid concentration (c) IE (%) versus time and acid concentration (d) IE (%) versus temperature and acid concentration (e) IE (%) versus time and inhibitor concentration (f) IE (%) versus time and temperature (g) IE (%) versus time and acid concentration.

3.6. Mathematical models of the inhibition efficiency

The equation in terms of coded factors can be used to make predictions about the response forgiven levels of each factor. By default, the high levels of the factors are coded as +1 and the low levels of the factors are coded as -1.

<table>
<thead>
<tr>
<th>3</th>
<th>9</th>
<th>0.5</th>
<th>1.2</th>
<th>303</th>
<th>4</th>
<th>0.109</th>
<th>3.025</th>
<th>60.97</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>10</td>
<td>1</td>
<td>0.7</td>
<td>313</td>
<td>8</td>
<td>0.109</td>
<td>1.512</td>
<td>76.21</td>
</tr>
<tr>
<td>22</td>
<td>11</td>
<td>1</td>
<td>0.7</td>
<td>323</td>
<td>8</td>
<td>0.163</td>
<td>2.269</td>
<td>65.76</td>
</tr>
<tr>
<td>9</td>
<td>12</td>
<td>0.5</td>
<td>0.2</td>
<td>303</td>
<td>12</td>
<td>0.218</td>
<td>2.017</td>
<td>53.8</td>
</tr>
<tr>
<td>14</td>
<td>13</td>
<td>1.5</td>
<td>0.2</td>
<td>323</td>
<td>12</td>
<td>0.327</td>
<td>3.025</td>
<td>54.72</td>
</tr>
<tr>
<td>10</td>
<td>14</td>
<td>1.5</td>
<td>0.2</td>
<td>303</td>
<td>12</td>
<td>0.245</td>
<td>2.269</td>
<td>58.06</td>
</tr>
<tr>
<td>19</td>
<td>15</td>
<td>1</td>
<td>0.2</td>
<td>313</td>
<td>8</td>
<td>0.191</td>
<td>2.647</td>
<td>57.16</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>0.5</td>
<td>0.2</td>
<td>303</td>
<td>4</td>
<td>0.163</td>
<td>4.537</td>
<td>40.65</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>1.5</td>
<td>1.2</td>
<td>323</td>
<td>12</td>
<td>0.191</td>
<td>1.764</td>
<td>74.26</td>
</tr>
<tr>
<td>11</td>
<td>18</td>
<td>0.5</td>
<td>1.2</td>
<td>303</td>
<td>12</td>
<td>0.082</td>
<td>0.756</td>
<td>83.68</td>
</tr>
<tr>
<td>24</td>
<td>19</td>
<td>1</td>
<td>0.7</td>
<td>313</td>
<td>12</td>
<td>0.163</td>
<td>1.512</td>
<td>77.11</td>
</tr>
<tr>
<td>2</td>
<td>20</td>
<td>1.5</td>
<td>0.2</td>
<td>303</td>
<td>4</td>
<td>0.163</td>
<td>4.537</td>
<td>40.81</td>
</tr>
<tr>
<td>25</td>
<td>21</td>
<td>1</td>
<td>0.7</td>
<td>313</td>
<td>8</td>
<td>0.109</td>
<td>1.512</td>
<td>76.21</td>
</tr>
<tr>
<td>20</td>
<td>22</td>
<td>1</td>
<td>1.2</td>
<td>313</td>
<td>8</td>
<td>0.082</td>
<td>1.134</td>
<td>82.56</td>
</tr>
<tr>
<td>26</td>
<td>23</td>
<td>1</td>
<td>0.7</td>
<td>313</td>
<td>8</td>
<td>0.109</td>
<td>1.512</td>
<td>76.21</td>
</tr>
<tr>
<td>17</td>
<td>24</td>
<td>0.5</td>
<td>0.7</td>
<td>313</td>
<td>8</td>
<td>0.191</td>
<td>2.647</td>
<td>50.81</td>
</tr>
<tr>
<td>8</td>
<td>25</td>
<td>1.5</td>
<td>1.2</td>
<td>323</td>
<td>4</td>
<td>0.136</td>
<td>3.781</td>
<td>67.75</td>
</tr>
<tr>
<td>15</td>
<td>26</td>
<td>0.5</td>
<td>1.2</td>
<td>323</td>
<td>12</td>
<td>0.218</td>
<td>2.017</td>
<td>64.67</td>
</tr>
<tr>
<td>12</td>
<td>27</td>
<td>1.5</td>
<td>1.2</td>
<td>303</td>
<td>12</td>
<td>0.082</td>
<td>0.756</td>
<td>87.1</td>
</tr>
<tr>
<td>18</td>
<td>28</td>
<td>1.5</td>
<td>0.7</td>
<td>313</td>
<td>8</td>
<td>0.163</td>
<td>2.269</td>
<td>67.75</td>
</tr>
<tr>
<td>5</td>
<td>29</td>
<td>0.5</td>
<td>0.2</td>
<td>323</td>
<td>4</td>
<td>0.218</td>
<td>6.05</td>
<td>43.84</td>
</tr>
<tr>
<td>28</td>
<td>30</td>
<td>1</td>
<td>0.7</td>
<td>313</td>
<td>8</td>
<td>0.109</td>
<td>1.512</td>
<td>76.21</td>
</tr>
</tbody>
</table>
The coded equation is useful for identifying the relative impact of the factors by comparing the factor coefficients. The Model F-value of 28.13 implies the model is significant. There is only a 0.01% chance that an F-value this large could occur due to noise. Values of "Prob > F" less than 0.0500 indicate model terms are significant. In this case A, B, C, D, BC, CD, A^2 are significant model terms. Values greater than 0.1000 indicate the model terms are not significant. If there are many insignificant model terms (not counting those required to support hierarchy), model reduction may improve your model. The "Pred R-Squared" of 0.8010 is in reasonable agreement with the "Adj R-Squared" of 0.9291; i.e. the difference is less than 0.2. "Adeq Precision" measures the signal to noise ratio. A ratio greater than 4 is desirable. Your ratio of 19.623 indicates an adequate signal. This model can be used to navigate the design space.

Final Equation in Terms of Coded Factors:
Inhibition Efficiency = +74.17+3.60* A+12.17* B-3.54* C+5.73* D+1.78* AB+0.11* AC+0.23* AD-2.22* BC+9.375E-003* BD-2.14* CD-12.85* A^2-2.27* B^2-0.17* C^2+0.30* D^2….(19)

Final Equation in Terms of Actual Factors:

Table 6. ANOVA Response for inhibition efficiency of Zinc in HCl medium with Picralima nitida leaf extract

<table>
<thead>
<tr>
<th>Source</th>
<th>Squares</th>
<th>df</th>
<th>Mean Square</th>
<th>F</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model</td>
<td>5429.16</td>
<td>14</td>
<td>387.80</td>
<td>28.13</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>A-Acid Conc.</td>
<td>233.93</td>
<td>1</td>
<td>233.93</td>
<td>16.97</td>
<td>0.0009</td>
</tr>
<tr>
<td>B-Inhibitor Conc.</td>
<td>2667.66</td>
<td>1</td>
<td>2667.66</td>
<td>193.54</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>C-Temperature</td>
<td>226.06</td>
<td>1</td>
<td>226.06</td>
<td>16.40</td>
<td>0.0010</td>
</tr>
<tr>
<td>D-Time</td>
<td>591.11</td>
<td>1</td>
<td>591.11</td>
<td>42.89</td>
<td>< 0.0001</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>AB</td>
<td>50.52</td>
<td>1</td>
<td>50.52</td>
<td>3.66</td>
<td>0.0748</td>
</tr>
<tr>
<td>AC</td>
<td>0.20</td>
<td>1</td>
<td>0.20</td>
<td>0.015</td>
<td>0.9057</td>
</tr>
<tr>
<td>AD</td>
<td>0.83</td>
<td>1</td>
<td>0.83</td>
<td>0.060</td>
<td>0.8092</td>
</tr>
<tr>
<td>BC</td>
<td>78.99</td>
<td>1</td>
<td>78.99</td>
<td>5.73</td>
<td>0.0302</td>
</tr>
<tr>
<td>BD</td>
<td>1.406E-03</td>
<td>1</td>
<td>1.406E-03</td>
<td>1.020E-04</td>
<td>0.9921</td>
</tr>
<tr>
<td>CD</td>
<td>73.15</td>
<td>1</td>
<td>73.15</td>
<td>5.31</td>
<td>0.0360</td>
</tr>
<tr>
<td>A²</td>
<td>427.57</td>
<td>1</td>
<td>427.57</td>
<td>31.02</td>
<td>< 0.0001</td>
</tr>
<tr>
<td>B²</td>
<td>13.31</td>
<td>1</td>
<td>13.31</td>
<td>0.97</td>
<td>0.3414</td>
</tr>
<tr>
<td>C²</td>
<td>0.072</td>
<td>1</td>
<td>0.072</td>
<td>5.199E-003</td>
<td>0.9435</td>
</tr>
<tr>
<td>D²</td>
<td>0.24</td>
<td>1</td>
<td>0.24</td>
<td>0.017</td>
<td>0.8970</td>
</tr>
<tr>
<td>Residual</td>
<td>206.75</td>
<td>15</td>
<td>13.78</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of Fit</td>
<td>206.75</td>
<td>10</td>
<td>20.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pure Error</td>
<td>0.000</td>
<td>5</td>
<td>0.000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cor Total</td>
<td>5635.91</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std. Dev.</td>
<td>3.71</td>
<td>R-Squared</td>
<td>0.9633</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>65.18</td>
<td>Adj R-Squared</td>
<td>0.9291</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C.V. %</td>
<td>5.70</td>
<td>Pred R-Squared</td>
<td>0.8010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PRESS</td>
<td>1121.36</td>
<td>Adeq Precision</td>
<td>19.623</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-2 Log Likelihood</td>
<td>143.05</td>
<td>BIC</td>
<td>194.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>AICc</td>
<td>207.33</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. 7. Results of the optimum inhibition efficiency

To confirm the validity of the results, additional experimental were conducted. The chosen condition for the concentration, temperature and time are listed in table (5), along with the predicted and measured inhibited efficiencies. As shown in table (7) the measured inhibition efficiencies were close to the predicted values. It shows that RSM approach was appropriate for optimizing the corrosion inhibition process.
Table 7. Validation of Result for Corrosion Inhibition of Zn in HCl by Plant Extract

<table>
<thead>
<tr>
<th>S/N</th>
<th>Inhibitor</th>
<th>Acid Conc. A</th>
<th>Inhibitor Conc. B, (g/L)</th>
<th>Temperature C, (k)</th>
<th>Time D, (hr)</th>
<th>Predicted IE (%)</th>
<th>Experimental IE (%)</th>
<th>Percentage error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>PNL</td>
<td>1.48</td>
<td>1.11</td>
<td>304.78</td>
<td>11.29</td>
<td>86.38</td>
<td>87.1</td>
<td>0.01</td>
</tr>
</tbody>
</table>

4. CONCLUSIONS

i. The *Picralima nitida* leaves extract acts as a good inhibitor for corrosion of zinc in 0.1 M HCl solution. The IE increases with increasing extract concentration.

ii. The inhibitory action of the extract was carried out through adsorption of the extract compounds on zinc surface. The adsorption process is spontaneous, stable and obeys Langmuir adsorption isotherm.

iii. The adsorption process is physical as various studies technique points towards physisorption. More so, the increase in temperature decreases the IE of the extract.

iv. The presence of *Picralima nitida* extract increases the activation energy of the corrosion reaction.

v. The *Picralima nitida* leaves extract provide strong protection against corrosion of zinc in presence of chloride ions. The extent of protection increases with increasing extract concentration and the leave extracts exhibit optimal inhibition efficiency IE (%) of 87.56, at optimal inhibition concentration of 1.2 gL⁻¹, temperature and time of 313 k and 8 hrs respectively

References

