Adsorption behavior of pharmaceutically active dexketoprofen as sustainable corrosion Inhibitor for API X80 carbon steel in acidic medium

Nkem B. Iroha1,* and Abosede O. James2

1Electrochemistry and Material Science Unit, Department of Chemistry, Federal University, Otuoke, P.M.B 126, Yenagoa, Bayelsa, Nigeria

2Department of Pure and Industrial Chemistry, University of Port Harcourt, Port Harcourt, Nigeria

*E-mail address: irohanb@fuotuoke.edu.ng

ABSTRACT

The inhibition of X80 carbon steel corrosion in 1 M HCl solution by dexketoprofen (DKP) was studied using weight loss (WL), electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP) and scanning electron microscopy (SEM) techniques. The results indicated that DKP acts by way of adsorption as an effective protective inhibitor in the aggressive acid medium. The inhibition efficiency of DKP increased with concentration but was lower at higher temperature. The results of potentiodynamic polarization showed that DKP molecule behaved as a mixed type inhibitor by reducing both the anodic and the cathodic electrochemical reactions. Dexketoprofen was adsorbed on the X80 steel surface in accordance with Langmuir adsorption isotherm. SEM analyses supported formation of protective film on the X80 steel in the presence of DKP.

Keywords: Dexketoprofen, Adsorption, Inhibition, Carbon steel, SEM

1. INTRODUCTION

Carbon steel is a material of choice, which has found wide application in many industries like petroleum, automobile, construction, metallurgical among others [1]. API X80 steel is a high strength carbon steel with high mechanical strength, good weldability and low hardenability, and thus is suitable for transporting different kinds of fluids under pressure, such
Corrosion is one of the major problems that pose a great danger to steel especially in the oil and gas industry. Industrial processes like acid pickling and oil well acidification typically use aggressive species, such as hydrochloric acid, which severely attacks carbon steel [2]. The practical solution of the problems of corrosion, lies in controlling it by reducing the rate at which the corrosion reactions proceed. Corrosion inhibitors are widely used in industry to reduce the corrosion rate of metals and alloys in contact with aggressive environment [3].

Organic compounds containing heteroatoms and aromatic rings are known to exhibit good inhibiting properties for steels in acidic environment [4-6]. It has been established that the common mechanism involved in any corrosion inhibition process is adsorption of the inhibitor on the metal surface [7, 8]. Adsorption of these compounds depends upon several factors including molecular weight, nature of substituents, solution temperature, nature of inhibitor and electrolytes etc. [9, 10]. Most efficient corrosion inhibitors available today are costly, poisonous, and constitute environmental hazards, hence the need for testing materials that are low cost and eco-friendly. Therefore, the current research is focused on the application of non-toxic eco-friendly corrosion inhibitor.

Nowadays, researchers have explored the potentials behind some drugs as green corrosion inhibitors for the corrosion of metals. On this list are clotrimazole [11], Rhodanine azosulpha [12], Norfloxacin and Sparfloxacin [13], Amoxicillin [14], methocarbamol [15], sulphadoxine and pyrimethamine [16], Trazodone [17], Tenormin [18], Fluconazole [19], Diclofenac sodium [20], among others. In all these and other studies, dexketoprofen has not been reported as an inhibitor for the corrosion of any metal in any medium. Dexketoprofen (DKP) is a nonsteroidal anti-inflammatory drug (NSAID). It prevents the production of prostaglandins and therefore reduces inflammation and pain. Along with peripheral analgesic action, it possesses central analgesic action. The objective of the present study is to investigate the adsorption and inhibitive properties of dexketoprofen for the corrosion of API X80 steel in 1 M HCl solution using weight loss (WL), electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PDP) and scanning electron microscopy (SEM) techniques.

2. MATERIALS AND METHODS

2.1. Materials

Carbon sheets of type API 5L X80 having weight percentage composition of C-0.065%, Si-0.29%, Mn-1.5%, P-0.015%, Al-0.003%, Mo-0.28%, Ti-0.020%, Nb-0.076% and the remainder being iron were used for gravimetric, surface analysis and the electrochemical measurements. The sheets were mechanically press-cut into coupons having dimension 2 cm × 2 cm for weight loss and surface analysis and 1 cm × 1 cm for electrochemical measurements and containing a small hole of about 0.10 mm diameter near the upper edge. The X80 steel coupons were abraded with 600 - 1000 grade silicon carbide papers, washed by double distilled water, degreased with acetone, dried at room temperature and stored in a moisture-free desiccator before their use in corrosion studies.

The acid solution of 1 M HCl was prepared by dilution of analytical grade 37% HCl with double distilled water. Dexketoprofen (DKP) manufactured by Menarini and marketed under the trade name Ketesse was purchased from Sabheik Pharmaceuticals Nig. Ltd., and used for corrosion testing without further purification. The molecular formula of the drug is C_{16}H_{14}O_{3}
and its molecular and optimized structures are shown in Scheme 1. Different amounts of DKP were dissolved in 1 M HCl solution to prepare the desired concentrations in ppm.

![Molecular and optimized structures](image)

(a) Molecular structure
(b) Optimized structure: O - red; C - gray; H - white.

Scheme 1. Structure of (2S)-2-[3-(benzoyl)phenyl]propanoic acid (Dexketoprofen)
(a) Molecular structure (b) Optimized structure: O - red; C - gray; H - white.

2.2. Weight loss measurements

The X80 steel coupons were initially weighed in an electronic balance. After that the coupons were immersed for in 1 M HCl solutions without and with different concentrations of the DKP maintained at 30, 40 and 50 °C respectively, in a water bath.

The specimens were removed after 24 h exposure period at, washed with water to remove any corrosion product, rinsed with acetone, dried and reweighed to determine the weight loss. The tests were performed in triplicate to guarantee the reliability of the results and the mean value of the weight loss is reported. The weight loss values were used to calculate the mean corrosion rate in (mg·cm⁻²).

The corrosion rate of mild steel was determined using the relation [21]:

\[
CR = \frac{\Delta W}{At}
\]

where: \(\Delta W\) is the weight loss, \(A\) is the area and \(t\) is the immersion period. The surface coverage (\(\theta\)) and percentage inhibition efficiency (\(\eta_{WL}(\%)\)) were calculated from the corrosion rate data according to equations 2 and 3, respectively [22].

\[
\theta = \left(1 - \frac{CR_{inh}}{CR_{bla}} \right)
\]

\[
\eta_{WL}(\%) = \theta \times 1000
\]

where: \(CR_{bla}\) and \(CR_{inh}\) are the corrosion rates of X80 steel in the absence and presence of inhibitor, respectively.
2.3. Electrochemical measurements

The electrochemical experiments were performed using Parstat 2263 potentiostat at 30 °C. A standard three electrode cell assembly was used for this purpose. It consisted of the API X80 carbon steel specimen as working electrode (1 cm²), a platinum foil as a counter electrode and saturated calomel electrode (SCE) as a reference electrode. A luggin capillary arrangement was used to keep the SCE close to the working electrode to avoid the ohmic contribution. A stabilization period of 30 minutes was allowed for potentiodynamic polarization (PDP) and electrochemical impedance spectroscopy (EIS) experiments. PDP runs were conducted in the potential range from -250 mV to +250 mV relative to the corrosion potential. A scan rate of 1 mVs⁻¹ was used for the PDP runs. The Tafel extrapolation method was used in the calculation of corrosion current densities and other Tafel fit parameters. All potential values were reported versus SCE. EIS runs were performed in the frequency range of 100 kHz to 100 mHz at an amplitude of 10 mV. The impedance measurements were conducted at open circuit potential (OCP). All the measurements were done in solutions open to air under unstirred conditions.

2.4. Surface analysis

The scanning electron microscope (SEM) model FEG 250 was used to examine the X80 steel surface after immersion in corrosive media in the absence and presence of dexketoprofen (DKP) for 24 h. The X80 steel surfaces pretreated as described in Section 2.1 were immersed in 1 M HCl solution without and with 500 ppm concentration of DKP. After 24 h, the specimens were retrieved, washed with water, dried and used for SEM analysis.

3. RESULTS AND DISCUSSION

3.1. Weight loss method

The variation of corrosion rate with DKP concentration for X80 steel corrosion in 1 M HCl without and with different concentrations of dexketoprofen (DKP) at 303, 313 and 323 K, respectively is presented in Figure 1. From the graph, it was observed that the corrosion rate of X80 steel in the acid decreases with increasing concentration of the inhibitor but increases with increasing temperature. This behavior reflects the inhibitory effect of DKP toward the acid corrosion of the steel and that the extent of corrosion inhibition is dependent on the concentration of the inhibitor. This is probably due to the fact that the surface coverage of the steel increases by the adsorption of inhibitor molecules.

Plot of the inhibition efficiency ηWL (%) versus inhibitor concentration is shown in Figure 2. From the figure, it could be observed that the values of ηWL were gradually increased with the increase in concentration of DKP, reaching a maximum value of 94.23 % at the highest concentration of 1000 ppm at temperature of 303 K. Several researchers in their studies reported similar results for green inhibitors [23-27].

However, the inhibition efficiency decreases with temperature rise which could be due to the desorption effect of the inhibitor molecules. Decrease in inhibition efficiency with increase in temperature indicates and that the adsorption of the inhibitor favours the mechanism of physical adsorption.
Figure 1. Variation of corrosion rate with inhibitor concentration for X80 steel corrosion in 1 M HCl without and with different concentrations of DKP at different temperatures.

Figure 2. Variation of η_{WL} (%) with inhibitor concentration for X80 steel corrosion in 1 M HCl without and with different concentrations of DKP at different temperatures.
3.2. Electrochemical impedance spectroscopy

The Electrochemical impedance spectroscopy (EIS) measurements were performed on X80 steel in 1 M HCl without and with different concentrations of dexketoprofen (DKP). Figures 3 shows Nyquist plots obtained from the EIS measurements at 303 K. The impedance spectra in the absence and presence of DKP exhibit one single depressed semicircular capacitive loop, which may be attributed to the charge transfer reaction and suggesting that the studied inhibitor is controlling the corrosion reaction without modifying the mechanism of X80 steel [28]. The depression in semicircle loop is usually attributed to the roughness and other inhomogeneities of the solid electrode [29].

Furthermore, the diameter of the capacitive loop in the presence of inhibitor is larger than that in the blank acid solution, and increased with the inhibitor concentration. Impedance data were analyzed using the equivalent circuit as shown in Figure 4, which consist of the solution resistance (R_s) in series with the parallel combination of constant phase element (CPE) in place of double layer capacitance (C_{dl}) and charge transfer resistance (R_{ct}). Mathematically, the impedance of the CPE is given by:

$$Z_{CPE} = Y_0^{-1} (j\omega)^{-n}$$

(4)

where: Y_0 is the CPE constant, j is the imaginary unit ($j^2 = -1$), ω is the angular frequency ($\omega = 2\pi f$, f is the frequency in Hz), and n is the CPE exponent also known as the phase shift which is related to the degree of surface inhomogeneity. The value of C_{dl} was obtained from the following equation:

$$C_{dl} = Y_0 (2\pi f_{max})^{n-1}$$

(5)

where: f_{max} is the frequency at which the imaginary part of impedance is maximum. The inhibition efficiency was calculated using following equation [30]:

$$\eta_{EIS}(\%) = \left[\frac{R_{ct}^{inh} - R_{ct}^{bla}}{R_{ct}^{inh}} \right] \times 100$$

(6)

where: R_{ct}^{bla} and R_{ct}^{inh} are charge transfer resistances in absence and presence of DKP respectively. The derived impedance parameters along with the inhibition efficiency η_{EIS} (%) are listed in Table 1.

The results in Table 1 show that the R_{ct} values increase with increasing concentration of DKP and the C_{dl} values for the inhibited solutions are generally lower than that of the acid blank, which suggest that the inhibitor adsorb on the steel surface thereby forming a protective layer on the steel surface and reducing the rate of charge transfer process.

Again, it is clearly seen that the inhibition efficiency in 1 M HCl solution increases with the increase in the concentration of dexketoprofen (DKP). The results show that the inhibition efficiencies obtained from the impedance study are in good agreement with those from the previous gravimetric measurements.
Figure 3. Nyquist plots recorded for X80 steel in 1M HCl in the absence and presence of different concentrations of DKP.

Figure 4. Equivalent circuit used to model the impedance data of X80 steel in the absence and presence of different concentrations of DKP at 303 K.
Table 1. Impedance parameters obtained from Nyquist plots for X80 steel in 1 M HCl at different concentrations of DKP.

<table>
<thead>
<tr>
<th>DKP Conc. (ppm)</th>
<th>R_s (Ω cm^2)</th>
<th>R_ct (Ω cm^2)</th>
<th>Y_o (μΩ^{-1}s^2cm^{-2})</th>
<th>C_dl (μFcm^{-2})</th>
<th>n</th>
<th>ηEIS (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.009</td>
<td>20.6</td>
<td>264.8</td>
<td>189.4</td>
<td>0.901</td>
<td></td>
</tr>
<tr>
<td>250</td>
<td>1.271</td>
<td>50.4</td>
<td>229.9</td>
<td>95.3</td>
<td>0.917</td>
<td>59.1</td>
</tr>
<tr>
<td>500</td>
<td>1.398</td>
<td>80.9</td>
<td>205.8</td>
<td>77.4</td>
<td>0.923</td>
<td>74.5</td>
</tr>
<tr>
<td>750</td>
<td>1.521</td>
<td>119.3</td>
<td>214.3</td>
<td>52.9</td>
<td>0.911</td>
<td>82.7</td>
</tr>
<tr>
<td>1000</td>
<td>1.700</td>
<td>134.7</td>
<td>193.7</td>
<td>39.6</td>
<td>0.918</td>
<td>84.7</td>
</tr>
</tbody>
</table>

3.3. Polarization measurements

The potentiodynamic polarization curves for API X80 carbon steel in the absence and presence of various concentrations of dexketoprofen (DKP) in 1 M HCl solution are shown in Figure 5. The polarization parameters such as corrosion potential (E_corr), corrosion current density (I_corr), anodic Tafel slope (β_a) and cathodic Tafel slope (β_c) were deduced by extrapolating the linear branches of the anodic Tafel slopes and displayed in Table 2.

The corrosion inhibition efficiency was calculated using Equation 7 [31] and also displayed in Table 2.

\[
\eta_{PDP}(\%) = 100 \left(\frac{I_{corr}^{bla} - I_{corr}^{inh}}{I_{corr}^{bla}} \right)
\]

Table 2. Polarization parameters for X80 steel corrosion in 1 M HCl without and with different concentrations of DKP

<table>
<thead>
<tr>
<th>DKP Conc. (ppm)</th>
<th>E_corr (mV/SCE)</th>
<th>β_c (mV/dec)</th>
<th>β_a (mV/dec)</th>
<th>I_corr (mA/cm^2)</th>
<th>η_PDP (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-498</td>
<td>187.3</td>
<td>97.9</td>
<td>1288.6</td>
<td>-</td>
</tr>
<tr>
<td>250</td>
<td>-471</td>
<td>201.9</td>
<td>131.4</td>
<td>351.8</td>
<td>72.7</td>
</tr>
<tr>
<td>500</td>
<td>-465</td>
<td>226.8</td>
<td>149.1</td>
<td>299.5</td>
<td>76.7</td>
</tr>
<tr>
<td>750</td>
<td>-450</td>
<td>198.0</td>
<td>158.5</td>
<td>164.7</td>
<td>87.2</td>
</tr>
<tr>
<td>1000</td>
<td>-446</td>
<td>234.7</td>
<td>155.2</td>
<td>122.0</td>
<td>90.5</td>
</tr>
</tbody>
</table>
Figure 5. Potentiodynamic polarization curves for X80 steel in 1 M HCl without and with various concentrations of DKP

It can be observed from Figure 5 and Table 2 that the introduction of DKP to the 1 M HCl solution brings about a significant suppression of the corrosion current density reflecting the inhibition of the X80 steel corrosion reactions. In addition, the cathodic and anodic arms of the polarization curves are both shifted towards lower values in the presence of the DKP, suggesting that DKP reduced the rate of anodic X80 steel dissolution in the acid as well as the cathodic hydrogen ion reduction. The extent of the shift in E_{corr} in the presence of the DKP compared to the blank is generally less than 85 mV, suggesting that the DKP act as mixed-type inhibitors [32-34]. The change in the values of β_a and β_c at different concentrations of the inhibitor can be attributed to the occurrence of redox complexation reactions of Fe-inhibitor complexes involving different oxidation states of Fe in the electrochemical systems [35]. Table 2 clearly shows that as the concentrations of DKP increases, there is an increase in the corrosion inhibition efficiency due to the adsorption of inhibitor on the steel surface.

3.4. Adsorption isotherm

Adsorption of a corrosion inhibitor on metal surface can occur through physisorption or chemisorption mechanism or a competitive form of both mechanisms. The adsorption of the inhibitor (DKP) molecules was investigated by different adsorption isotherm models such as Langmuir, Frumkin and Temkin. Out of these isotherms, Langmuir model showed the best fit and is expressed by the following equation [25]:

$$-30-$$
\[
\frac{C}{\theta} = \frac{1}{K_{ads}} + C
\]
\tag{8}

where, \(K_{ads}\) is equilibrium adsorption constant, \(C\) is inhibitor concentration and \(\theta\) is the fraction of surface covered by inhibitor. The plots \(C/\theta\) against \(C\) for X80 steel in 1 M HCl solution at different temperatures are shown in Figure 6. The values of \(K_{ads}\) were calculated from the intercepts of the straight lines on the \(C/\theta\). It is a known fact that \(K_{ads}\) represents the strength of adsorption or desorption between adsorbate and adsorbent. Large values of \(K_{ads}\) correspond to more efficient adsorption. The slight deviations of the slopes of the Langmuir plots from unity are due to the interactions between the adsorbed molecules on the metal surface as well as change in the heat of adsorption with increasing surface coverage [36]. The adsorption equilibrium constant, \(K_{ads}\) is related to the change in Gibbs free energy of adsorption (\(\Delta G_{ads}\)) as:

\[
\Delta G_{ads}^{\circ} = -RT\ln\left(55.5K_{ads}\right)
\]
\tag{9}

where: \(R\) is the gas constant (8.314 J K\(^{-1}\) mol\(^{-1}\)), \(T\) is the absolute temperature and 55.5 is the concentration of water solution. Thermodynamic parameters for the adsorption process obtained from Langmuir adsorption isotherm are given in Table 3. \(K_{ads}\) values decrease with increase in temperature indicating decrease in adsorption strength, probably due to desorption of DKP molecules.

Figure 6. Langmuir isotherm for the adsorption of DKP on X80 steel surface at different temperatures
The negative values of $\Delta G^\circ_{\text{ads}}$ implies spontaneity of the adsorption process and stability of the adsorbed film on the X80 steel surface. Generally, the values of $\Delta G^\circ_{\text{ads}}$ up to -20 kJmol$^{-1}$ are attributed to physisorption while those around -40 kJmol$^{-1}$ or more negative are associated with chemisorption process [37]. The $\Delta G^\circ_{\text{ads}}$ values obtained in this study are between -39.8 kJ mol$^{-1}$ and -26.6 kJ mol$^{-1}$ which imply that adsorption involves physisorption.

Table 3. Langmuir parameters for the adsorption of DKP on X80 steel surface at different temperatures

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>Slope</th>
<th>K_{ads}</th>
<th>R^2</th>
<th>$\Delta G^\circ_{\text{ads}}$ (kJmol$^{-1}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>303</td>
<td>0.9717</td>
<td>0.0958</td>
<td>0.9934</td>
<td>-4.21</td>
</tr>
<tr>
<td>313</td>
<td>1.0369</td>
<td>0.0810</td>
<td>0.9955</td>
<td>-3.91</td>
</tr>
<tr>
<td>323</td>
<td>1.0942</td>
<td>0.0687</td>
<td>0.9949</td>
<td>-3.59</td>
</tr>
</tbody>
</table>

3.5. Effect of temperature

![Figure 7. Arrhenius plot for DKP adsorption on X80 steel in 1 M HCl solution](image-url)
The effect of temperature was studied using the weight loss experiments in the absence and presence of various concentrations of DKP for 24 h immersion time in the temperature range of 303-323 K. From the results depicted in Figure 1 and 2 and already discussed in section 3.1, it is seen that an increase in temperature causes significant decrease in the \(\eta_{WL} \) and increase in the CR. The effect of temperature on the inhibition efficiency of DKP can be explain with the aid of Arrhenius equation presented bellows [38]:

\[
\log CR = \frac{-E_a}{2.303RT} + \log A
\]

(10)

where: CR, R, T and A denote the corrosion rate, the universal gas constant, the absolute temperature and Arrhenius pre-exponential factor, respectively. \(E_a \) represents the activation energy and its values for corrosion of inhibited and non-inhibited X80 steel were derived from the slopes of Arrhenius plots shown in Figure 7.

The \(E_a \) values for X80 steel in 1 M HCl in the absence of DKP is 35.61 kJ mol\(^{-1}\) and in the presence of 250, 500, 750 and 1000 ppm concentrations of DKP were 42.90 kJ mol\(^{-1}\), 48.15 kJ mol\(^{-1}\), 51.84 kJ mol\(^{-1}\) and 56.31 kJ mol\(^{-1}\). An increase in activation energy is observed as the DKP concentration increases.

The higher values of \(E_a \) for inhibited cases as compared to uninhibited case indicate that in the presence of DKP X80 steel corrosion became difficult owing to the adsorption of the molecules of DKP on the metallic surface [39].

3.6. Surface analysis
The SEM images of X80 steel specimens in 1 M HCl without and with 1000 ppm of the dexketoprofen (DKP) are presented in Figure 8. It can be seen that X80 steel surface in the absence of inhibitor (Figure 8(a)) appears very rough with clearly observed cavity and pits. That means that, X80 steel surface is highly damaged in the absence of DKP.

The X80 steel specimen retrieved from the acid solution containing 1000 ppm DKP (Figure 8(b)) generally show less damaged surface with minor pits and cracks which confirms that the DKP molecules form protective films on the steel surface thereby reducing the corrosion process.

4. CONCLUSIONS

Dexketoprofen (DKP) was investigated as corrosion inhibitor for X80 carbon steel in 1 M HCl solution. DKP inhibited the corrosion of the steel with the inhibition efficiency increasing with increasing concentration of inhibitor but decreases on rise in temperature.

Potentiodynamic polarization measurements revealed that DKP acted as a mixed type corrosion inhibitor. Impedance measurements revealed that DKP form protective film on X80 steel surface thereby reducing the rate of charge transfer process. The adsorption behaviour of DKP on X80 steel surface in 1 M HCl obeys the Langmuir adsorption isotherm and involves physical adsorption mechanism. SEM images confirmed the formation of protective film by DKP on X60 steel surface.
References

